

Al in K-12 Education

Prof. Dr. Tilman Michaeli tilman.michaeli@tum.de 31.05.2024

Computational Thinking 2.0

Table 1: Comparison of educational concerns in traditional programming education vs. education for creating ML and other data-driven models.

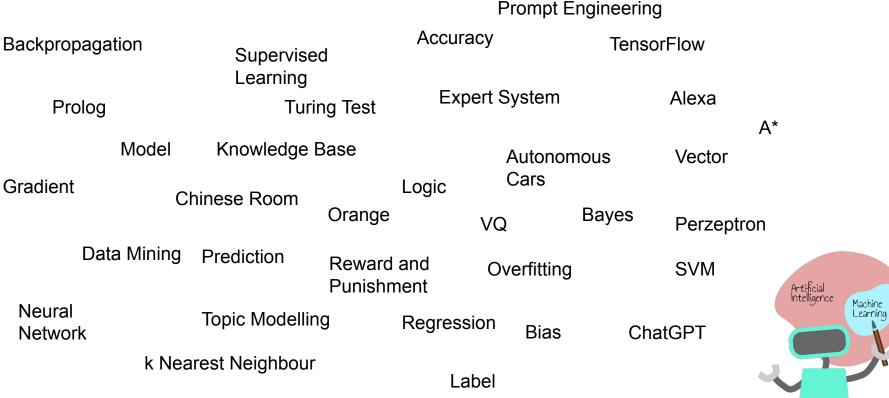
From Computational Thinking to AI Thinki	ing
	solving
	Structure

	CT1.0	CT 2.0		
Stage 1 Formalize the problem		Collect data from the intended context		
Stage 2	Design a solution	Filter and clean data. Label data.		
Stage 3	Implement the solution in a stepwise program	Train a model from the available data		
Stage 4	Compile and execute the program	Evaluate and use the model		
ution	Weakly context-dependent	Strongly context-dependent		
on	In some cases clearly works or doesn't. Can be for-	Models may display higher or lower confidence. Ef-		
	mally proven to be either correct or incorrect (at	ficiency can be established through testing. Statisti-		
	advanced levels). Effectiveness can be proven.	cally better or worse (at advanced levels).		
ng –	Black-boxed or glass-boxed cross checking of the	Evaluate the model against predictions, completely		
	outputs and the program code	black boxed		
	Tracking and tracing program states and code for	Experimenting with data, parameters, and hyperpa-		
error.		rameters, based on trial and error		
puy of problem	Deductive	Inductive		
solving				
Structure	Transparent. Visualization tools available.	Black boxed		
Notional machines	Stepwise, deterministic, discrete flow of program	Parallel, possibly nondeterministic, passing data		
	through states (as contents of memory locations).	through a network		
Complexity concerns	Prepare for worst case, optimize for average case	No time / space variance between passing data		
		through a network		
Portability	Tedious to make portable to different platforms.	Straightforwardly portable		
Trial and error Discouraged		Necessary		
Software life cycle	Traditional, well established life cycle. Clear version-	More data create new "versions". Documenting is		
	ing.	based on empiricism and reporting of training data.		
Syntax and semantics Syntactically strict, highly structured		Data can be unstructured, loose semantics		

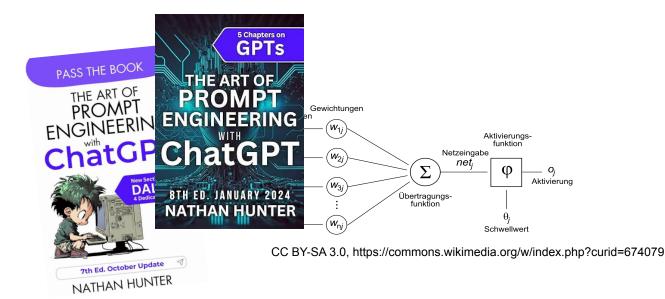
Learning ABOUT AI

Enable everyone to...

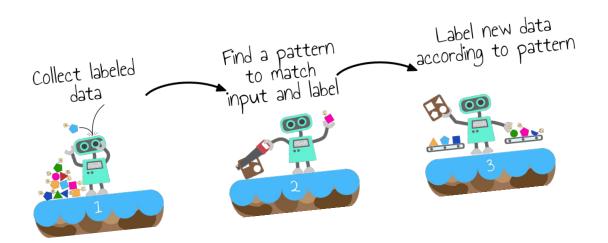
- participate in an increasingly digital world
- get involved in shaping this world
- make informed decisions about AI in society.


AI is a "new" topic for computing education (but not CS)

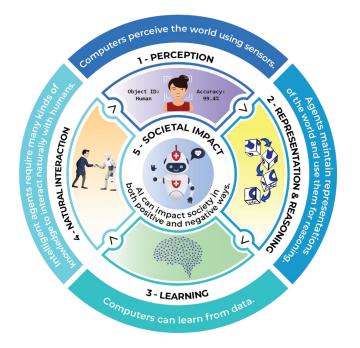
"big open question in the classroom"

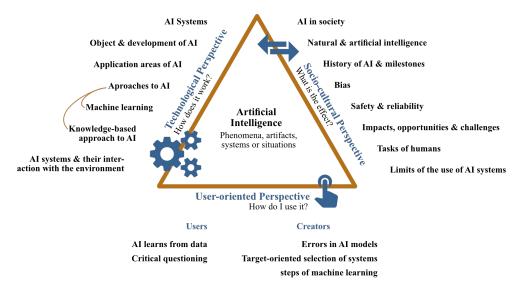

What is important?

What should everyone know about AI?



What should everyone know about AI?





Some existing approaches...

Touretzky et al., 2022

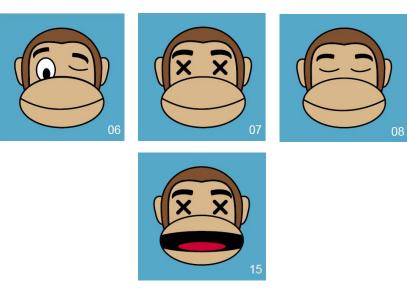
Michaeli et al., 2023

ТШ

How to teach AI?

- Extremely limited experience from the classroom
- No empirical evidence

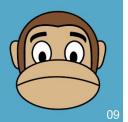
"big open question in the classroom"


How to teach AI?

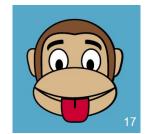
Therefore according to well-established general principles of "good" computing education

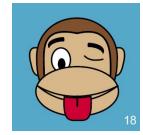
- based on ideas and concepts
- highly contextualized
- personally meaningful creative constructing

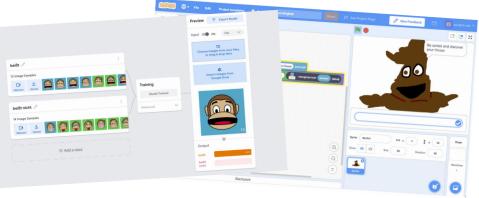
Biting

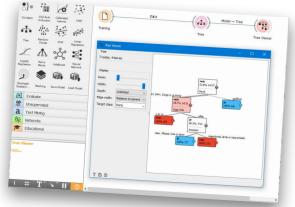


Michaeli, T., Seegerer, S., Kerber, L. & Romeike, R. (2023). <u>Data. Trees. and Forests</u> <u>– Decision Tree Learning in K-12 Education</u>. In Proceedings of the 3rd Teaching Machine Learning and Artificial Intelligence Workshop 2022, PMLR (pp. 1-5).









CS is creating, constructing and designing!

... as a blackbox

... configuring AI methods, building and testing models

.. implementing AI methods on their own

UNTERRICHTSANGEBOT

In Germany...

- Al included in the revision of our national CS standards for K-12 (published "soon")
- A lot of states already integrated AI within their curricula

Integration into teaching practice?

Bayerisches Staatsministerium für Unterricht und Kultus

Table 1: Learning Objectives in the Bavarian Curriculum on AI (year 11)

Students discuss approaches to defining the term artificial intelligence (AI), describe various basic ideas of AI methods (including machine learning) and their areas of application.

Students explain the functionality of a selected machine learning algorithm (k-nearest neighbors or decision tree learning) in general and for concrete examples.

Students analyze the influence of training data and parameters on the reliability of the results of a machine learning procedure, if necessary using a suitable tool.

Students explain the functionality of an artificial neuron (perceptron) and describe the basic structure of a neural network.

Students implement (late start: simulate) a single artificial neuron.

Students take a position on selected current possible applications of artificial intelligence and evaluate opportunities and risks for the individual and society.

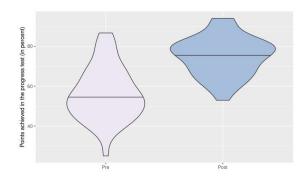
- between 300 and 500 CS teachers in our area
- heterogeneous backgrounds
- little prior experience: So far, neither AI in teacher education nor in the classroom
- just over a year until teaching

PD for in-service teachers

- Getting to know each other
- Playful beginning and overview
- Appetite for more

- Advanced content knowledge
- Practical implementation in the classroom

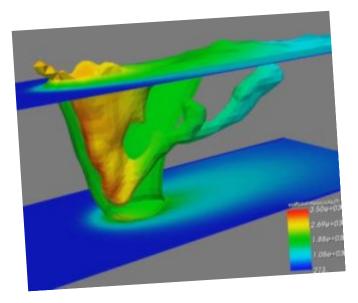
Jetzinger, Baumer & Michaeli, 2024


PD for in-service teachers

Evaluating with a "progress test"

Ultiple of the block of the blo

Pre for different cohorts

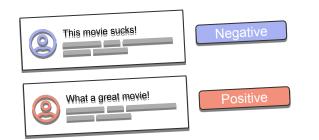


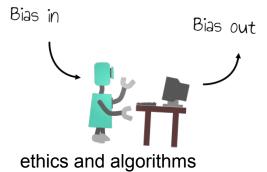
Pre-post

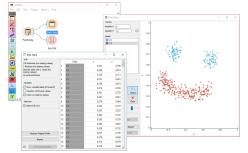
Jetzinger, Baumer & Michaeli, 2024

Digital Transformation and Science

				Q Suche	Deutsch -	GitHub	Anmelder
TensorFlow-Tutorials Schnellstart für Anfänger Schnellstart für Experten		mnist = tf.keras	s.datasets.mnist	WE NOTHER OF 1		0	0
ANFÄNGER		(x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 # Add a channels dimension					
ML-Grundlagen mit Keras	~						
Daten laden und vorverarbeiten	~	<pre>x_train = x_train[, tf.newaxis].astype("float32") x_test = x_test[, tf.newaxis].astype("float32") Verwenden Sie tf.data , um den Datensatz zu tf.data und zu mischen:</pre>					
Schätzer	~						
FORTGESCHRITTENE			, Jon Daterisal	2 20 tr.data und zu mische	en:		
Anpassung	~	<pre>train_ds = tf.data_Dataset.from_tensor_slices((X_train, y_train)).shuffle(100000.batch(32))</pre>				• •	0
Verteiltes Training	~	<pre>test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)</pre>					
Bilder	~						
Text	~	Erstellen Sie das tf.	.keras Modell mithilfe	der Unterklassen-API des Kera	as- Modells :		
Strukturierte Daten	~	<pre>class MyModel(Model): definit(self):</pre>				•	ă
Generativ	~	self.conv1 = C	<pre>self)init() conv2D(32, 3, activat</pre>	ion='relu')			
nterpretierbarkeit	~	<pre>self.flatten = Flatten() self.d1 = Dense(128, activation='relu') self.d2 = Dense(128, activation='relu') self.d2 = Dense(10)</pre>					
erstärkungslernen 🤀 🗸 🗸		<pre>def call(self, x) x = self.conv1(</pre>): (x)				
		<pre>x = self.flatte x = self.d1(x) return self.d2(</pre>	in(x)				
		# Create an instanc	e of the model				

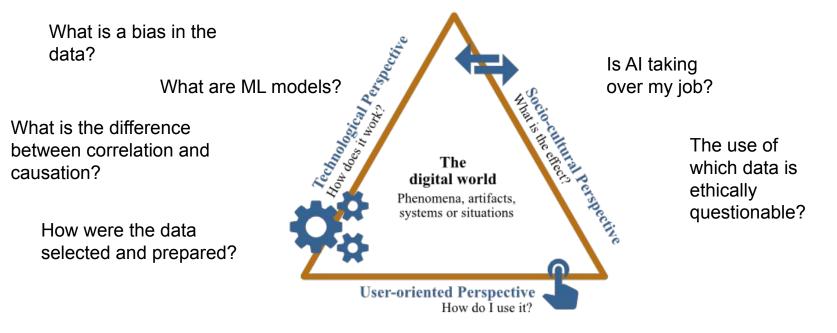

Simulations and data analysis as the 3rd and 4th pillars of science


AI as Content and Method...


Digital Bus	iness Models	VZ.
Digital Das	Freemium	Open Source
Free Google	slack miro	ed Hat
Quora	Commitchimp	CONFLUENT
-	E-Commerce	Advertising
On-Demand	2000	Google
	Concernendshirt	🗾 Quora
Delivery Hero	Peer-to-Peer	Hidden Revenue
Subscriptions	mintos	O Pinterest
		Google

digital business models

text document analysis in the social sciences



analyzing measured data in the nat. sciences

Learning & teaching WITH AI requires learning ABOUT AI!

Where could I profitably use AI in my teaching?

How do I interpret the results for an appropriate intervention?

Thank you for your attention!